RESEARCH ARTICLE

OPEN ACCESS

Integration Planning and Operation Scheduling of Distribution Generation for Home Appliances

M. Nageswara Rao, R. Srinivasa Rao

Department of EEE, University College of Engineering (A), JNTUK, Kakinada, Andhra Pradesh, India.

ABSTRACT

Use of distributed renewable energy sources for domestic energy consumption will increase in near future due to its advantages as being clean and infinite energy generation possibility. This trend allows more efficient energy consumption because of reducing distribution losses and dependence of domestic appliances to grid distribution. Electrical energy is an essential ingredient for the development of a nation. In this paper, it is proposed grid connected solar PV without and with battery at domestic level to minimize the load on live grid during peak time, excess power export to the grid when the PV generation is more compared to connected load and increase the participation of renewable energy sources in our daily energy consumption. The decision support program enables the consumer to implement the most efficient electricity management strategy while achieving the goal of minimizing the electricity bill and to supply the quality power. The cost of investment and payback periods are computed for PV system using cost benefit analysis

Keywords : Distributed Generation, Load scheduling, Energy storage device, DSM, Net meter, Cost benefit analysis

I. INTRODUCTION

The present century emerged with numerous challenges and opportunities that affect global energy, economics, environment, and security. These challenges have in part resulted from population growth, electric utility restructuring, and crises in fossil fuel production and delivery in various parts of the world, environmental pollution, and global warming. These driving forces underlie need and opportunity for enhancing the nation's infrastructure for generating, transmitting, and delivering reliable and affordable energy [1]. It is envisioned that a portfolio of distributed generation (DG) technologies could provide a sizeable fraction of the nation's electricity generation requirements and, in concert with other generation sources, supply reliable energy in a constrained energy infrastructure. DG systems generally consist of the following:

- Small and modular generating systems (such as micro turbines, reciprocating engines, fuel cells, cogeneration of heating/power systems, and hybrid units) that use a diversity of fuels, such as natural gas and hydrogen;
- 2) Renewable energy resources (such as PV, solar, wind, geothermal, biomass, tidal, and hydropower).

In this paper to grid-connected PV systems without and with battery storage analyzed because of popularity of this type of system. With further developments in PV technology and lower manufacturing costs, it is envisioned that PV power will account for a higher percentage of electric power generation in near future. PV represents superior characteristics such as pollution free and abundant alternate source of energy with minute generation costs [2,3]. Domestic energy management will play an important role in the enrichment of security of next-generation electric grid. Electricity supply in India has been lagging in terms of service (measured by hours of supply) as well as penetration. Only 31% of rural households have access to electricity and supply suffers from frequent power cuts and high fluctuations in voltage and frequency, with so called black outs and brown outs [4].

In order to respond to this in an environment friendly manner, integration of distributed renewable energy farms and the utilization of distributed energy storages are becoming major concerns for stakeholders involved in the design of future energy delivery grids [5]. The integration of existing grids with renewable sources provides economical, sustainable and efficient power distribution, and this allows the control of greenhouse effect. Sharing renewable energy of distributed generators in large scale can considerably reduce energy demands from the grid, and thus, more environment-friendly energy harvesting and efficient energy distribution will be possible in near future [6]. There is extensive interest for integration of distributed renewable sources in future smart grid structures for sustainable and affordable energy generation.

Benefits of DG integration

DG integration fetches the following benefits [7]:

- Integration of DG at strategic locations leads to reduced line losses.
- Integration of DG provides enhanced voltage support thereby improving voltage profile.
- Improved power quality.
- Integration of RES based DGs provides substantial environmental benefits. This results in an indirect monetary benefit in terms of reduced health care costs.
- Reduced fuel costs due to increased overall efficiency.
- Reduced reserve requirements and associated costs. Lower operating costs due to peak shaving.
- Reduced emissions of pollutants.
- Encouragement to RES based generation.

II. POWER SYSTEM MODEL

In the power system model of this paper we consider a single user. A consumer obtains electricity from different power supplies, mainly live grid, solar and local energy storage capacity (e.g. battery). In this power system model a consumer can turn on any appliance at any instant of time. Then an optimal scheduling of distributed energy storages and home appliances is done in order to minimize peak demand and total energy cost.

Relation of energy consumption of an appliance over a period is given as

$$E_a = \sum_{h=1}^{H} Z_a^h \tag{1}$$

where, E_a is energy consumption of appliance 'a', Z_a^{h} is energy consumption of appliance 'a' over 1 hour.

We consider peak hours between 6 p.m to 11p.m. The electricity bill gives us a record to know how much electricity we consume at what cost. It depend on at which time how much power is consumed. Total energy consumption of appliance 'a' is the sum of energy consumption in on-peak hour and off-peak hour.

$$E_{a} = E_{a,p}^{t} + E_{a,op}^{t}$$
 (2)

Similarly, energy consumption of all the appliances over a period of 24 hour is given as

$$E_a = \sum_{a=1}^{n} E_a \tag{3}$$

The optimization can be achieved by schedule operation of appliances from on-peak hour to off-peak hour. It results in minimize the peak load in on-peak hour [8].

(A) The load scheduling problem

In load scheduling problem, grid customer can operate certain appliances in off peak period instead of peak period. The tariff considered as grid tariff and main objective is to avoid the overloading of distribution system during peak time.

(B) The energy storage device

In our study, we have assumed that each individual customer $m \in M$, is equipped with a dedicated electricity storage device with a storage capacity B_m^{cap} a charging efficiency η_c and a discharging efficiency η_d grid with battery connected system. We further denote charging behavior of house hold *m* at period *h* as $B_{h,m}^{c}$ and its corresponding discharging power profile for the same period as $B_{h,m}^{d}$. If B_c^{max}

and B_c^{min} represent the maximum charging rate and the minimum rate of discharge respectively,

$$B_{h,m}^{c} \ge 0, \quad \forall h \in [1,24], \quad \forall m \in M$$
(4)

$$B_{h,m}^{d} \ge 0, \quad \forall h \in [1,24], \quad \forall m \in M$$
(5)

$$B_{h,m}^{c} \leq B_{c}^{\max} , \forall h \in [1,24], \forall m \in M$$
 (6)

$$B_{h,m}^{d} \leq B_{d}^{mim} , \forall h \in [1,24], \forall m \in M$$
(7)

If B_m^h is customer *m* battery state of charge at period *h*, then:

$$B_{m}^{h} = B_{m}^{h-1} + \eta_{c} B_{h,m}^{c} - B_{h,m}^{d}, \quad \eta_{c}[0,1]$$
(8)

Where
$$B_m^h \le B_m^{cap}$$
 (9)

Because of inefficiency associated with battery charging and discharging, concurrent charging and discharging operations in any given time period h, would result in power losses through the battery. Thus for optimal power management the constraint [9] is imposed:

$$B_{h,m}^{c} + B_{h,m}^{d} \le 1 \tag{10}$$

Since the power discharged from the storage device during total period H must be less than initial state of charge, B_m^0 and power delivered into battery during same period, we have:

$$B_{m}^{0} + \sum_{h=1}^{24} \eta_{c} B_{h,m}^{c} \ge \sum_{h=1}^{24} \eta_{d} B_{h,m}^{d}$$
(11)

In our model, customers have to charge their batteries from SPV during day time to meet their certain electrical appliances load demand. Considering $E_{h,m}^{g}$ being the power purchased from the utility grid by customer *m* at time *h*,

$$E_{h,m}^{PV} = E_{h,m} + B_{h,m}^{c} + E_{h,m}^{g}$$
(12)

During high peak hours, consumers purchase as little electricity as possible from the utility grid. They primarily rely on their battery backup power to run their certain appliances. The households' electricity load is therefore either supported by the utility grid or the battery banks [10].

$$E_{h,m} = E_{h,m}^{g} + \eta_{d} B_{h,m}^{d}$$
(13)

In first case i.e grid without battery connected system, we have considered the exchange of power from the inverter devices to the grid. Thus,

$$E_{h,m}^{PV} - E_{h,m} \ge 0, \forall h \in [6,18], \quad \forall m \in M$$
(14)

In second case i.e grid with battery connected system, we have considered the exchange of power from PV/the storage devices to the grid. Thus,

$$E_{h,m}^{PV} - (B_{h,m}^{c} + E_{h,m}) \ge 0, \forall h \in [6,18], \forall m \in M$$
(15)

(C) Net-meter

If during a sunny day more electricity is produced by solar PV system then use or consumes, this excess solar power is delivered back to the utility grid with effect of rotating electric meter backwards. When this happens we will normally be given credits by local power company for amounts of electricity produced by grid connected PV system. If during billing period we use or consume more electrical energy than we generate, we are billed for the "net amount" of electricity consumed as we would be normally. If, however, we generate more solar energy than we consume, we are credited for the "net amount" of electricity generated which may be either a reduction in our monthly electricity bill or a positive payment.

(D) Demand side management

The main idea of the DSM is that customers are educated and encouraged to use the power during the off-peak hours, so that peak demand comes down, thus I^2R losses are reduced. Demand side management (DSM) can be achieved by cooperative activities between the utility and its customers (sometimes with the assistance of third parties such as energy services companies, Non Government Organizations and other trade allies) to implement options for increasing efficiency of energy utilization, with resulting benefits to the customer, utility and society as a whole. Its main aim is reduction of peak demand or reduction of energy consumed during periods when energy-supply systems are constrained. (E) Cost benefit analysis

The costs can come down by as much as 18% to 22% for solar PV and 10% for wind. The result is striking: renewable energy technology equipment costs are falling and the technologies themselves are becoming more efficient. The combination of these

two factors is leading to declines, rapid ones, in cost

of energy from renewable technologies. To date, this

transformation is most visible in the power

generation sector, where dramatic cost reductions for solar photovoltaic (PV), but also, to a lesser extent, for wind power are driving high levels of investment in renewables. At the same time, where untapped economic hydropower, geothermal and biomass resources exist, these technologies can still provide the lowest-cost electricity of any source [11].

Pay back period =
$$\frac{\text{Cost of Renewable Energy}}{\text{Money Saved per Year}}$$
 (16)

III. CASE STUDIES

In our work, two case studies are considered with same load profiles; calculate capital cost of system, monthly bill and payback period of each case study.

- 1) Grid connected PV system without battery
- 2) Grid connected PV system with battery

3.1 Grid connected PV system without battery

The grid-connected PV system is an electrical power generating system that uses a PV array as primary source of electricity generation and is intended to operate synchronously and in parallel with ac utility grid. Grid connected PV without battery systems, solar PV supplies entire load, excess energy is given to grid during sunny day generate power more than their individual requirement and rest of the time the entire load is shifted to grid as shown in fig 1.

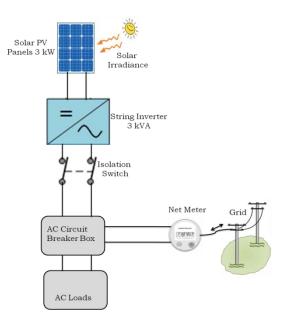


Fig.1 Grid connected PV without battery

Grid connected PV with battery systems, solar PV supplies entire load, excess energy is given to grid during sunny day generate power more than their individual requirement and rest of the time some of the loads are connected to battery and remaining loads are shifted to grid. Net meter is bidirectional meter, it can read energy drawn from grid and export to grid as shown in fig.2. In grid connected system lights and fans are connected to battery and battery is supplying entire day for lights and fans. Remaining loads are connected to grid supply.

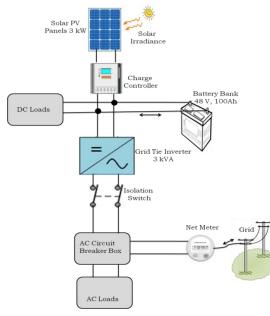
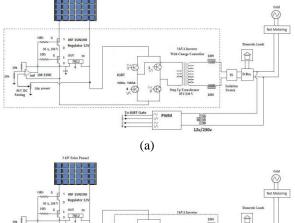



Fig.2 Grid connected PV with battery

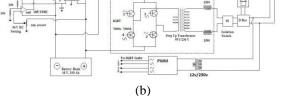


Fig.3 Schematic diagram of grid connected PV (a) without battery and (b) with battery

The solar PV is connected to charge controller. The charge controller gives maximum voltage of 48 V and it is fed to a battery bank of rating 48 V, 150 Ah (in case of grid connected with battery otherwise PV output is directly connected to string inverter). The battery is connected to inverter designed with MPPT

having less than 4% THD circuit consists of four IGBT' rated 100 V, 100 A each is used, firing circuit is designed and gate pulses are generated using pulse circuit PWM technique. The output voltage of 48 V, 50 Hz is stepped upto single phase, 230 V, 50 Hz connected to load. Two 10 Hy filter circuits have been connected to the inverter output in order to smooth the output AC voltage

Table 1. Home appliances used in case study in Regular Home Consumption

			sumption		
	Grid con	nected	PV with and wi	thout battery	
Home appliances	Rating (W)	Qty	working schedule (h) Session-I	working schedule (h) Session-II	
CFL lamps	18	18	5-6/17-22	5-6/17-22	
Fans	80	9	1-24	1-24	
Washing machine	600	01	7-8	7-8	
Refrigerator	300	01	1-24	1-24	
Air conditioner	2000	01	1-6/14-16/21- 24		
Geezer	800	01	7-8	7-8/18-20	
Wet grinder	800	01	19-20	19-20	
Motor (1.5 hp)	1117	01	19-20	19-20	
Rice cooker	800	01	12-13 /20-21	12-13 /20-21	
Mixer	800	01	19-20	19-20	
Television	100	01	7-8/12-14/19- 22	7-8/12- 14/19-22	
Iron box	1000	01	20-21	20-21	
Others	500	01	9-11/15-16	9-11/15-16	

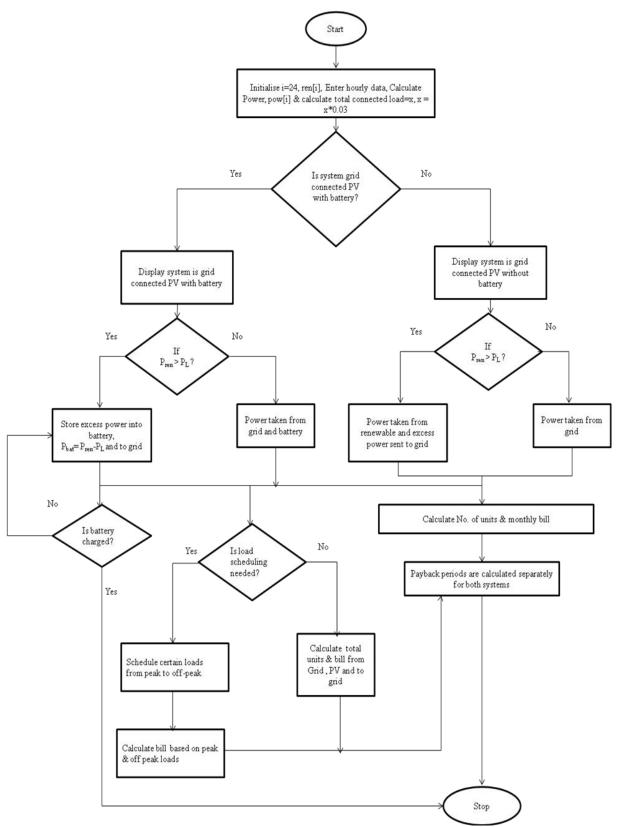
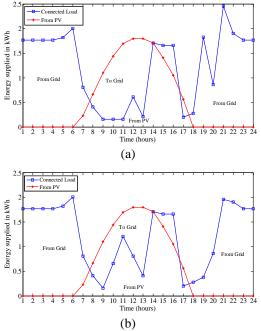
S. No.	Item Description	Qty	Capital cost in Rs.
1	Solar panel 24V-250Wp	12	
2	Module Mounting Structure	01	
3	PCU (Inverter with inbuilt charge controller)48V/3KVA Grid Tie Inverter	01	235550
4	Array Junction Box 5 in 1 out	01	
5	Cables	01	
6	Accessories-Danger, Display boards etc	01	
7	Battery Bank (LMLA type) 12 V- 150 Ah (48V-150Ah)	04	
8	Battery Stand (Equivalent to place specified battery bank)	01	50000
9	Earthing	01	1
10	Total capital cost without battery	235550	
11	Total capital cost (with b	285550	

Table 2. Technical Specifications for Array 3 kWp

Capacity without/with battery and capital cost Assumptions:

- 1) Solar energy produces under normal working conditions
- 2) The batteries will operate at a maximum depth of discharge of 85%.

Tables 1 and 2 shows home appliances used in the case study in regular home consumption and technical specifications for Array 3 kWp capacity without and with battery and capital cost.

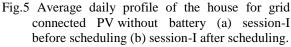

Fig.4 Flow chart for the proposed method

Fig.4 shows flow chart of proposed method for grid connected PV without battery, with battery backup and load scheduling. Initialize the hourly load, calculate the total connected load. If $P_{ren}>P_{load}$, all loads are connected to renewables except fans and lights (battery supplies fans and lights whole day), charge the battery and excess power exported to the grid. If $P_{ren}<P_{load}$, fan, light load are connected to battery, remaining loads are connected to grid. Consider the load scheduling, calculate electricity bill for without and with scheduling.

IV. RESULTS AND DISCUSSIONS

For simulation purpose, we have used a scenario of thirteen loads: lights, fans, TV, fridge, geezer, AC, washing machine, motor, rice cooker, mixer, iron box, wet grinder and other loads with energy consumption ratings of 0.018kWh, 0.08kWh, 0.08kWh, 0.1kWh, 0.16kWh, 0.8kWh, 2kWh, 0.8kWh, 1.05kWh, 0.8kWh, 0.8kWh, 1kWh, 0.6kWh and 0.05kWh respectively. In our scheme we schedule certain appliances operate from peak to off peak period. We consider peak hours between 6 P.M to 11 P.M. Here we consider two sessions: session-I (March to August) session-II (September to February).

Grid connected PV without battery as shown in fig.5 before and after scheduling in session-I (March to August). We observed that during day all connected loads are connected to solar PV when PV is more than the connected load and excess power is exported to the grid. During night time all loads are shifted to grid and there is no backup power supply.

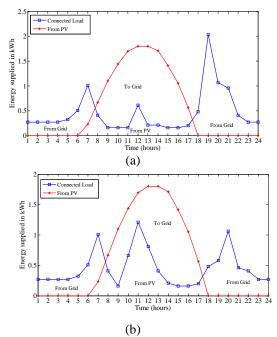
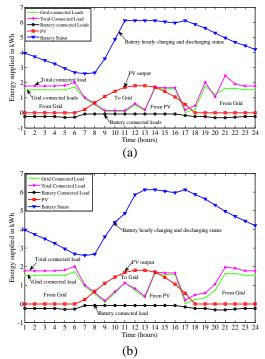
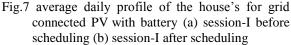
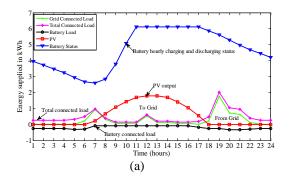




Fig. 6 average daily profile of the house's for grid connected PV without battery (a) session-II before scheduling (b) session-II after scheduling

Grid connected PV without battery as shown in fig.6 before and after scheduling in session-II (September to February).



We observed that during day time all connected loads are connected to solar PV when PV is more

than the connected load and excess power is exported to the grid. During night time all loads are shifted to grid and there is no backup power supply.

Grid connected PV with battery as shown in fig.7 before and after scheduling in session-I (March to August). We observed that during day all loads are connected to solar PV when PV is more than the connected load and excess power is exported to the grid. During night time, fans and lights are connected to battery, remaining loads are shifted to grid and here we use battery backup of 48 V, 150 Ah.

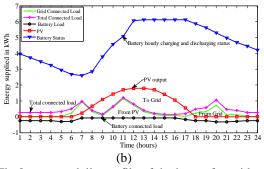


Fig.8 average daily profile of the house for grid connected PV with battery (a) session-II before scheduling (b) session-II after scheduling

Grid connected PV with battery as shown in fig.8 before and after scheduling in session-II (September to February). We observed that during day all connected loads are connected to solar PV when PV is more than the connected load and excess power is exported to the grid. During night time, fans and lights are connected to battery, remaining loads are shifted to grid and here we use battery backup of 48 V, 150 Ah.

		nnected PV v re scheduling		Grid connected PV without battery before scheduling Session-II				
Туре		(March to A	ugust)		(S	eptember to	Februar	y)
	From	From Grid with PV			From	Grid wit	th PV	То
	Grid	Grid	PV	Grid	Grid	Grid	PV	Grid
Energy consumed in kWh	886	696	189	214	325	245	80	324
Tariff/month in Rs.	6512	4840)	751	1707 1112			1134
Monthly saving in Rs		1672		751	595			1134
Session wise Saving		10032		4506	2380			4536
in Rs.	Six months				Four months			
Total saving in Rs.	21454							
Payback period in years				11				

Table.4 Grid connected PV without battery after scheduling

Туре	afte	nnected PV v r scheduling (March to A	Session	Grid connected PV without battery after scheduling Session-II (September to February)				
	From Grid with PV			То	From	Grid with PV		То
	Grid	Grid	PV	Grid	Grid	Grid	PV	Grid
Energy consumed in kWh	886	638	248	156	325	186	139	265
Tariff/month in Rs.	6512	4330)	547	1707 739			930
Monthly saving in Rs		2182		547	968			930
Session wise Saving in		13092		3282	3872 3			
Rs.		Six mon		Four months				
Total saving in Rs.	23966							
Payback period in years		10						

www.ijera.com

From Table 3 and Table 4 observed that energy consumed in kWh, tariff/month, monthly saving, session wise saving, total saving (session-I and session-II) and payback periods of before and after scheduling for grid connected PV without battery. We consider total saving 10 months over a year (300 sunny days) for session-I from March to August (consider 6 months) and session-II from September to February(consider 4 months). The payback period for grid connected PV without battery before scheduling is 11 years and after scheduling is 10 years.

Туре	Grid c	schedu		th battery ession-I .ugust)	before	Grid connected PV with battery before scheduling Session-II (September to February)				
V 1	From	Gr	id with	I PV	То	From Grid with PV			I PV	То
	Grid	Grid	PV	Battery	Grid	Grid	Grid PV Battery			Grid
Energy consumed in kWh	886	586	168	132	104	325	139	54	132	218
Tariff/month in Rs.	6512	3864			364	1707	482			764
Monthly saving in Rs		26	48		364	1225				764
Session wise		158	888		2184			3056		
Saving in Rs.		S	ix mon	ths		Four months				
Total saving in	26028									
Payback period in years		11								

Table: 5 Grid connected PV with battery before scheduling

Table: 6 Grid connected PV with battery after scheduling

	Grid	connec	ted PV	with battery	after	Grid connected PV with battery after					
		sche	duling §	Session-I		scheduling Session-II (September to					
Туре		(M	arch to .	August)		February)					
	From	(Grid with PV		То	From	From Grid with PV		n PV	То	
	Grid	Grid	PV	Battery	Grid	Grid	Grid	PV	Battery	Grid	
Energy consumed in kWh	886	528	226	132	46	325	81	112	132	160	
Tariff/month in Rs.	6512 3353				161	1707	227			560	
Monthly saving in Rs		3	159		161	1480				560	
Session wise		1	8954		966		2240				
Saving in Rs.			Six mo	nths		Four months					
Total saving in		28080									
Payback period in	10										
years											

From Table 5 and Table 6 observed that energy consumed in kWh, tariff/month, monthly saving, session wise saving, total saving (session-I and session-II) and payback periods of before and after scheduling for grid connected PV with battery. We consider total saving 10 months over a year (300 sunny days) for session-I from March to August (consider 6 months) and session-II from September to February(consider 4 months). The payback period for grid connected PV with battery before scheduling is 11 years and after scheduling is 10 years. The capital cost of grid connected with battery is more than without battery system by Rs.50000, but payback

periods of both the systems are same. In grid connected PV with battery system fans and lights are connected to battery for whole day. In grid connected PV without battery, grid and PV supply the load where as with battery, grid, PV and battery supply the load. The main difference between the grid connected PV without battery and with battery backup is that the grid connected PV without battery is always grid alive otherwise the power generated by solar PV is unutilized but in case of grid connected with battery backup, grid is not alive due to power failure or local maintenance power generated by solar PV is utilized through battery backup.

www.ijera.com

Table: 7 Comparison of Capital Cost, Saving and Payback Period with/without subsidy									
		Total capital	Total annual	saving in Rs.	Payback period				
On G	rid	cost in Rs.	Before scheduling	After scheduling	Before scheduling	After scheduling			
	Without subsidy	235550			11	10			
PV without battery system	With 30% subsidy	164885	21454	23966	7.5	7			
	With 50% subsidy	117775			5.5	5			
Grid connected	Without subsidy	285550			11	10			
PV with battery system	With 30% subsidy	199885	26226	28266	7.5	7			
	With 50% subsidy	142775			5.5	5			

From Table 7 observed that the subsidy 30% and 50% will be given by the government, payback periods will be same for grid connected PV without and with battery backup for different capital cost of the systems.

V. CONCLUSION

With the observed fast reduction of PV and battery system prices in recent years, interest in the use of grid connected PV without and with battery backup systems has ably increased. The goal of this research was to develop a decision support tool to help end-users identify the best investment decision

REFERENCES

- M. Shahidehpour, Investing in expansion: The many issues that cloud transmission planning, IEEE Power Energy, 2 (1), 2004, pp. 14– 18.
- M. Shahidehpour and F. Schwatrz, Don't let the sun go down on PV,"IEEE Power Energy, 2 (3), 2004, 40-48.
- [3]. I. Gyuk, The global markets for uninterruptible power supplies, volume 1: North America 5.0 KVA and under; Volume 2: North America over 5.0 KVA, in Proc. Conf. Elect. Energy Storage Syst., Appl., Technol., Orlando, 2000, 18-20.
- [4]. Blue print for power sector development, Ministry of Power, Government of India, New Delhi, 2001.
- [5]. B.B. Alagoz, A. Kaygusuz, A. Karabiber, A user-mode distributed energy management architecture for smart grid applications, Energy, 44, 2012, 167–177.
- [6]. J. Paska, P. Biczel, M. K1os, Hybrid power systems-an effective way of utilizing primary energy sources, Renewable Energy, 34, 2009 2414–2421.
- [7]. Priyanka Paliwal, N.P.Patidar, R.K.Nema, Planning of grid integrated distributed generators: A review of technology,

and optimum system size for their specific applications. We have developed a grid connected PV system without and with battery backup program with the objective to maximize saving by minimizing the electricity bill and scheduled certain loads to avoid the overloading of distribution system during peak hours verified by MATLAB simulation results. The model was capable of identifying the feasibility of an investment in PV without and with battery backup systems, and the specifications of the optimal system. The cost of investment and pay back periods has been calculated for solar PV by using cost benefit analysis.

> objectives and techniques, Renewable and Sustainable Energy Reviews, 40, 2014, 557–570.

- [8]. Kunal Patel, Arun Khosla, Jessy Badarimaya Deimon Khonglah, Autonomous Integration of Distributed Energy Sources and Home Appliances Coordination Scheme in Future Smart Grid Networks, 4th International Conference on Eco-friendly Computing and Communication Systems, 2015.
- [9]. Centolella P, The integration of price responsive demand into regional transmission organization (RTO) wholesale power markets and system, Energy, 35(4), 2010, 1568-74.
- [10]. Christopher O. Adika, Lingfeng Wang, Smart charging and appliance scheduling approaches to demand side Management, Electrical Power and Energy Systems, 2014, 232–240.
- [11]. http://www.irena.org/documentdownloads/pub li cations/i rena_re_power_costs_2014_re port.pdf